10 research outputs found

    A visual analytics approach for visualisation and knowledge discovery from time-varying personal life data

    Get PDF
    A thesis submitted to the University of Bedfordshire, in ful filment of the requirements for the degree of Doctor of PhilosophyToday, the importance of big data from lifestyles and work activities has been the focus of much research. At the same time, advances in modern sensor technologies have enabled self-logging of a signi cant number of daily activities and movements. Lifestyle logging produces a wide variety of personal data along the lifespan of individuals, including locations, movements, travel distance, step counts and the like, and can be useful in many areas such as healthcare, personal life management, memory recall, and socialisation. However, the amount of obtainable personal life logging data has enormously increased and stands in need of effective processing, analysis, and visualisation to provide hidden insights owing to the lack of semantic information (particularly in spatiotemporal data), complexity, large volume of trivial records, and absence of effective information visualisation on a large scale. Meanwhile, new technologies such as visual analytics have emerged with great potential in data mining and visualisation to overcome the challenges in handling such data and to support individuals in many aspects of their life. Thus, this thesis contemplates the importance of scalability and conducts a comprehensive investigation into visual analytics and its impact on the process of knowledge discovery from the European Commission project MyHealthAvatar at the Centre for Visualisation and Data Analytics by actively involving individuals in order to establish a credible reasoning and effectual interactive visualisation of such multivariate data with particular focus on lifestyle and personal events. To this end, this work widely reviews the foremost existing work on data mining (with the particular focus on semantic enrichment and ranking), data visualisation (of time-oriented, personal, and spatiotemporal data), and methodical evaluations of such approaches. Subsequently, a novel automated place annotation is introduced with multilevel probabilistic latent semantic analysis to automatically attach relevant information to the collected personal spatiotemporal data with low or no semantic information in order to address the inadequate information, which is essential for the process of knowledge discovery. Correspondingly, a multi-signi ficance event ranking model is introduced by involving a number of factors as well as individuals' preferences, which can influence the result within the process of analysis towards credible and high-quality knowledge discovery. The data mining models are assessed in terms of accurateness and performance. The results showed that both models are highly capable of enriching the raw data and providing significant events based on user preferences. An interactive visualisation is also designed and implemented including a set of novel visual components signifi cantly based upon human perception and attentiveness to visualise the extracted knowledge. Each visual component is evaluated iteratively based on usability and perceptibility in order to enhance the visualisation towards reaching the goal of this thesis. Lastly, three integrated visual analytics tools (platforms) are designed and implemented in order to demonstrate how the data mining models and interactive visualisation can be exploited to support different aspects of personal life, such as lifestyle, life pattern, and memory recall (reminiscence). The result of the evaluation for the three integrated visual analytics tools showed that this visual analytics approach can deliver a remarkable experience in gaining knowledge and supporting the users' life in certain aspects

    MyHealthAvatar lifestyle management support for cancer patients

    Get PDF
    MyHealthAvatar (MHA) is built on the latest information and communications technology with the aim of collecting lifestyle and health data to promote citizen's wellbeing. According to the collected data, MHA offers visual analytics of lifestyle data, contributes to individualised disease prediction and prevention, and supports healthy lifestyles and independent living. The iManageCancer project aims to empower patients and strengthen self-management in cancer diseases. Therefore, MHA has contributed to the iManageCancer scenario and provides functionality to the iManageCancer platform in terms of its support of lifestyle management of cancer patients by providing them with services to help their cancer management. This paper presents two different MHA-based Android applications for breast and prostate cancer patients. The components in these apps facilitate health and lifestyle data presentation and analysis, including weight control, activity, mood and sleep data collection, promotion of physical exercise after surgery, questionnaires and helpful information. These components can be used cooperatively to achieve flexible visual analysis of spatiotemporal lifestyle and health data and can also help patients discover information about their disease and its management

    MyEvents: a personal visual analytics approach for mining key events and knowledge discovery in support of personal reminiscence

    Get PDF
    Reminiscence is an important aspect in our life. It preserves precious memories, allows us to form our own identities and encourages us to accept the past. Our work takes advantage of modern sensor technologies to support reminiscence, enabling self-monitoring of personal activities and individual movement in space and time on a daily basis. This paper presents MyEvents, a web-based personal visual analytics platform designed for non-computing experts, that allows for the collection of long-term location and movement data and the generation of event mementos. Our research is focused on two prominent goals in event reminiscence: 1) selection subjectivity and human involvement in the process of self knowledge discovery and memento creation; and 2) the enhancement of event familiarity by presenting target events and their related information for optimal memory recall and reminiscence. A novel multi-significance event ranking model is proposed to determine significant events in the personal history according to user preferences for event category, frequency and regularity. The evaluation results show that MyEvents effectively fulfils the reminiscence goals and tasks.

    Literature Explorer: effective retrieval of scientific documents through nonparametric thematic topic detection

    Get PDF
    © 2020 The Authors. Published by Springer. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1007/s00371-019-01721-7Scientific researchers are facing a rapidly growing volume of literatures nowadays. While these publications offer rich and valuable information, the scale of the datasets makes it difficult for the researchers to manage and search for desired information efficiently. Literature Explorer is a new interactive visual analytics suite that facilitates the access to desired scientific literatures through mining and interactive visualisation. We propose a novel topic mining method that is able to uncover “thematic topics” from a scientific corpus. These thematic topics have an explicit semantic association to the research themes that are commonly used by human researchers in scientific fields, and hence are human interpretable. They also contribute to effective document retrieval. The visual analytics suite consists of a set of visual components that are closely coupled with the underlying thematic topic detection to support interactive document retrieval. The visual components are adequately integrated under the design rationale and goals. Evaluation results are given in both objective measurements and subjective terms through expert assessments. Comparisons are also made against the outcomes from the traditional topic modelling methods.This research is supported by the European Commission with project Dr Inventor (No 611383), MyHealthAvatar (No 60929), and by the UK Engineering and Physical Sciences Research Council with project MyLifeHub (EP/L023830/1).Published onlin

    Visual Analytics for Health Monitoring and Risk Management in CARRE

    Get PDF
    With the rise of wearable sensor technologies, an increasing number of wearable health and medical sensors are available on the market, which enables not only people but also doctors to utilise them to monitor people’s health in such a consistent way that the sensors may become people’s lifetime companion. The consistent measurements from a variety of wearable sensors implies that a huge amount of data needs to be processed, which cannot be achieved by traditional processing methods. Visual analytics is designed to promote knowledge discovery and utilisation of big data via mature visual paradigms with well-designed user interactions and has become indispensable in big data analysis. In this paper we introduce the role of visual analytics for health monitoring and risk management in the European Commission funded project CARRE which aims to provide innovative means for the management of cardiorenal diseases with the assistance of wearable sensors. The visual analytics components of timeline and parallel coordinates for health monitoring and of node-link diagrams, chord diagrams and sankey diagrams for risk analysis are presented to achieve ubiquitous and lifelong health and risk monitoring to promote people’s health

    MyHealthAvatar and CARRE: case studies of interactive visualisation for Internet-enabled sensor-assisted health monitoring and risk analysis

    Get PDF
    With the progress of wearable sensor technologies, more wearable health sensors have been made available on the market, which enables not only people to monitor their health and lifestyle in a continuous way but also doctors to utilise them to make better diagnoses. Continuous measurement from a variety of wearable sensors implies that a huge amount of data needs to be collected, stored, processed and presented, which cannot be achieved by traditional data processing methods. Visualisation is designed to promote knowledge discovery and utilisation via mature visual paradigms with well-designed user interactions and has become indispensable in data analysis. In this paper we introduce the role of visualisation in wearable sensor-assisted health analysis platforms by case studies of two projects funded by the European Commission: MyHealthAvatar and CARRE. The former focuses on health sensor data collection and lifestyle tracking while the latter aims to provide innovative means for the management of cardiorenal diseases with the assistance of wearable sensors. The roles of visualisation components including timeline, parallel coordinates, map, node-link diagrams, Sankey diagrams, etc. are introduced and discussed

    Finger-print based student attendance register

    Get PDF
    Monitoring student attendance in the UK has become a prime concern for Universities in recent months, due to a perceived lack of accuracy in reports submitted to the UK Borders Agency and political pressure about wider immigration issues. This project proposes a biometrics-based solution to that concern which also conforms to legislative pressures on data governance and information security, but which can provide accurate, reliable data for the institution to use in future reports to UKBA. All biometric techniques obviate the need to carry a token or card, or to remember several passwords, and reduce the risk of lost, forgotten or copied passwords, stolen tokens or over the shoulder attacks. This project shall focus on using fingerprint recognition, mainly due to the low-cost of devices for deployment and high user acceptance. Fingerprint recognition has traditionally been used for data access amongst a mobile population with increasingly portable devices, but it can also be employed for monitoring purposes, and this project defines how it could be used in this context to provide a fingerprint-based student attendance register. This project set out to overcome the drawbacks of the current attendance system, which can be fooled by “buddy swiping” of absent students’ RFID card or signing the register sheet on behalf of absentee students within a university. An application was designed within MATLAB to identify pattern in data, extract vectors from a fingerprint image and map values to the new area, then to verify a student who swipes his fingerprint against those values. The requirement was to make this system work asynchronously so that constant internet and database connections are not required, to deliver outstanding rates of accuracy, and to ensure this could work on machines with very low computing power so that it can be utilized in mobile devices in future. The delivered application uses the Principal Component Analysis method to compare fingerprints with the new form of harmonized data defined by eigenvectors and eigenvalues in n dimensions. This high-speed method uses the lowest computational power to deliver accurate results through making a closest match against stored values. This application has potential to be employed as a modular add-on by a University student monitoring system or connect to its database and transfer data

    A computer vision approach to monitor activity in commercial broiler chickens using trajectory-based clustering analysis

    No full text
    To monitor changes in broiler behaviour related to animal health and welfare, farmers typically observe their flocks using manual observation. However, due to the labour intensive and continuous aspect of this task, the analysis of broiler behaviour could be automated using camera technology. This paper proposes a proof-of-concept camera surveillance system based on the automated detection and tracking of broilers to monitor activity bouts using unsupervised 2D trajectory clustering. Firstly, a convolutional neural network-based detector was trained and tested on our labelled dataset which resulted in a precision, recall and f score of 0.98, 0.90 and 0.94, respectively. Using a tracking-by-detection approach, the proposed system was able to track chickens across video frames with a multi-object tracking accuracy of 74.7%. A component-based feature saliency Gaussian mixture model (CFSGMM) was subsequently generated and applied to objectively cluster the trajectories based on their spatiotemporal information. Nineteen features were extracted from the trajectories, representing both static and dynamic characteristics of broiler movement, and three activity classes were identified: ‘least active/resting,’ ‘active’ and ‘highly-active.’ The proposed method was validated on one-minute monocular video sequences. CFSGMM was applied to cluster 2D trajectories relating to broiler activity bouts within the commercial rearing environment with an agreement ranging from 6.0 to 99.7% when compared to human observation. We demonstrate the potential of the computer vision system to monitor overt, short-term changes in broiler activity associated with on-farm events and discuss the opportunities of leveraging the technology to monitor longer term changes in welfare state. It is anticipated that further development of the detection and tracking systems will improve the performance of the trajectory clustering method

    Integrated visualisation of wearable sensor data and risk models for individualised health monitoring and risk assessment to promote patient empowerment

    Get PDF
    Patient empowerment delivers health and social care services that enable people to gain more control of their healthcare needs. With the advancement of sensor technologies, it is increasingly possible to monitor people’s health with dedicated wearable sensors. The consistent measurements from a variety of wearable sensors imply that a huge amount of data may be exploited to monitor and predict people’s health using medically proven models. In the process of health data representation and analysis, visualisation can be employed to promote data analysis and knowledge discovery via mature visual paradigms and well-designed user interactions. In this paper, we introduce the role of visualisation for individualised health monitoring and risk management in the background of a European Commission funded project, which aims to provide self-management of cardiorenal diseases with the assistance of wearable sensors. The visualisation components of health monitoring, risk model exploration, and risk analysis are presented to achieve personalised health and risk monitoring and to promote people’s wellbeing. It allows the patients not only to view existing risks, but also to gain awareness of the right pathway to change their lifestyles in order to reduce potential health risks
    corecore